Towards Inclusive Fairness Evaluation via Eliciting Disagreement Feedback from Non-Expert Stakeholders

Mukund Telukunta, Venkata Sriram Siddhardh (Sid) Nadendla

Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA.

ALGORITHMIC FAIRNESS VS. HUMAN PERCEPTION

- ► Algorithmic fairness notions compare predictions with true outcomes
 - ► Example: In the criminal justice domain, COMPAS' predicted recidivism rate is compared against the true posterior recidivism rates computed during the next two years.
- ► Algorithmic fairness scores generally take the form [1]

$$f \triangleq \max_{k} \left(\max_{m,m'} f_{m,k} - f_{m',k} \right),$$

where different notions are defined as

Fairness Notion (f) Groupwise Rate $f_{m,k}$

Statistical Parity (SP)	$SP_{m,k} = \mathbb{P}(\hat{y} = k \mid x \in \mathcal{X}_m)$
Calibration (C)	$C_{m,k} = \mathbb{P}(y = k \mid \hat{y} = k, x \in \mathcal{X}_m)$
Accuracy Equality (AE)	$AE_{m,k} = \mathbb{P}(\hat{y} = y \mid x \in \mathcal{X}_m)$
Equal Opportunity (EO)	$EO_{m,k} = \mathbb{P}(\hat{y} = k \mid y = k, x \in \mathcal{X}_m)$
Predictive Equality (PE)	$PE_{m,k} = \mathbb{P}(\hat{y} = k \mid y \neq k, x \in \mathcal{X}_m)$

► Human perception of fairness compares algorithmic predictions against people's outcome predictions [4].

Overall Misclassification Rate (OMR) $OMR_{m,k} = \mathbb{P}(\hat{y} \neq k \mid y = k, x \in \mathcal{X}_m)$

- ightharpoonup True label observed in hindsight, y, is replaced with critic's label \tilde{y}
- ▶ Need such an approach for a quick preliminary fairness evaluation.

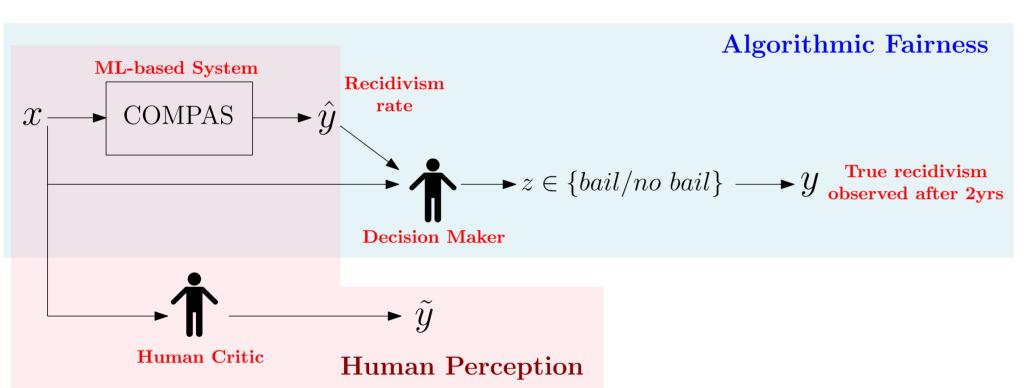


Figure 1: Algorithmic Fairness vs. Human Perception of Fairness in COMPAS

MOTIVATION: OPINIONS FROM DIVERSE STAKEHOLDERS

- ► Most practical application domains involve diverse stakeholders with varied technical expertise.
 - ► Criminal Justice: Judges, lawyers, prisoners and their family members, other people...
 - ► **Kidney Transplantation:** Organ Procurement Organizations, Transplant Centers, Surgeons, Recipients, Donors, Donor/Recipient family members, Transport Personnel...
- ► Some stakeholders lack technical expertise
 - ► Currently, their opinions are neglected!
 - ► Can only obtain lower-dimensional feedback (e.g. disagreements) at most!

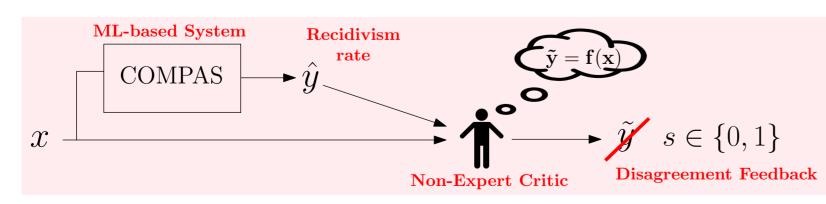
Can we estimate fairness notions using disagreement feedback from non-expert stakeholders? [2]

NON-EXPERT DISAGREEMENT MODEL

Given an input profile $x \in \mathcal{X}$ and outcome label $\hat{y} = g(x)$ from an ML-based classifier $g : \mathcal{X} \to \mathcal{Y}$, the non-expert disagreement model is given by

$$s = \begin{cases} 1, & \text{if } \tilde{y} \neq \hat{y}, \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

where, \tilde{y} is the unknown non-expert's intrinsic label.



Hence, the disagreement rate with respect to the group \mathcal{X}_m is defined as

$$DR_m = \mathbb{P}(s = 1 \mid x \in \mathcal{X}_m) = \mathbb{P}(\tilde{y} \neq \hat{y} \mid x \in \mathcal{X}_m)$$
 (2)

Furthermore, for a given outcome label $k \in \mathcal{Y}$ be denoted as

$$DR_{m,k} = \mathbb{P}(s=1 \mid \hat{y}=k, x \in \mathcal{X}_m) = \mathbb{P}(\tilde{y} \neq k \mid \hat{y}=k, x \in \mathcal{X}_m) \quad (3)$$

DEFINITE NOTIONS

Group fairness notions that can be exactly computed from disagreement rates.

Proposition 1: Calibration of the ML-based system is given as

$$CA = \max_{k} \left(\min_{m,m'} DR_{m,k} - DR_{m',k} \right). \tag{4}$$

Papers/P1_Disagreements_GF/BIAS 2023/mst-logo

Proposition 2: Accuracy Equality of the ML-based system is given as

$$AE = \max_{k} \left(\min_{m,m'} \sum_{k \in \mathcal{Y}} DR_{m,k} \cdot SP_{m,k} - \sum_{k \in \mathcal{Y}} DR_{m',k} \cdot SP_{m',k} \right). \tag{5}$$

INDEFINITE NOTIONS

Group fairness notions that can be *estimated* from disagreement rates.

Proposition 3: Equal Opportunity of the system can be estimated as

$$\hat{EO} = \frac{1}{2} \left[\max_{k} \left(\phi(m, k) - 1 \right) + \max_{k} \left(1 - \phi(m', k) \right) \right], \tag{6}$$

where
$$\phi(m,k) = \max_{m} \frac{(1-DR_{m,k})\cdot SP_{m,k}}{(1-DR_{m,k})\cdot SP_{m,k} + \sum_{l\neq k} SP_{m,l}}$$
.

Proposition 4: Predictive Equality of the system can be estimated as

$$\hat{PE} = \frac{1}{2} \left[\max_{k} \left(\mu(m, k) - 1 \right) + \max_{k} \left(1 - \mu(m', k) \right) \right], \tag{7}$$

where
$$\mu(m, k) = \max_{m} \frac{DR_{m,k} \cdot SP_{m,k}}{DR_{m,k} \cdot SP_{m,k} + \sum_{l \neq k} SP_{m,l}}$$
.

Proposition 5: Overall misclassification rate of the system is given as

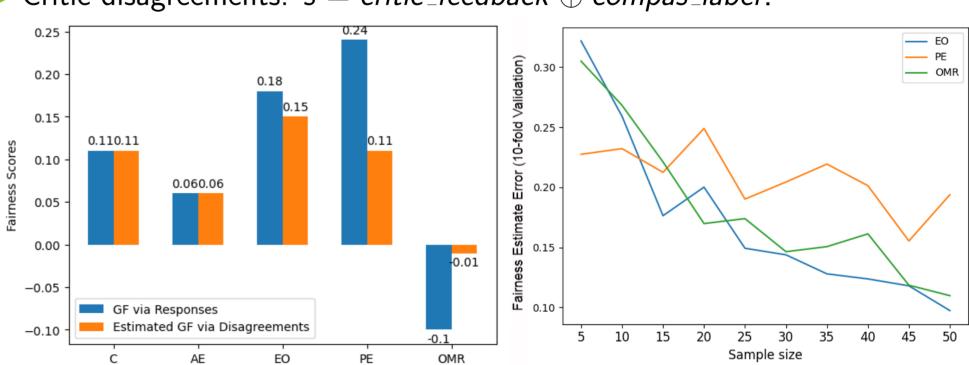
$$O\hat{M}R = \frac{1}{2} \left[\max_{k} \left(\omega(m, k) - 1 \right) + \max_{k} \left(1 - \omega(m', k) \right) \right], \tag{8}$$

where
$$\omega(m,k) = \max_{m} \frac{\sum_{l \neq k} SP_{m,l}}{(1 - DR_{m,k}) \cdot SP_{m,k} + \sum_{l \neq k} SP_{m,l}}$$
.

VALIDATION USING A REAL DATASET

Dataset: Real human feedback curated by Dressel and Farid [3].

- ▶ 1000 defendant descriptions from COMPAS dataset
- ▶ 400 critics responded *yes* or *no* to "Will this person recidivate in 2 years?".
- ► Critics' responses are aggregated based on majority rule.
- ▶ Critic disagreements: $s = critic_feedback \oplus compas_label$.



CONCLUSION AND FUTURE WORK

- Proposed a novel and inclusive disagreement-based feedback model for non-expert stakeholders.
- ► Fairness Estimation: (i) Definite notions can be precisely quantified from disagreement rates, (ii) Indefinite notions can be estimated from bounds.
- ▶ In the future, we will apply the proposed feedback model to kidney placement to collect patient and donor opinions.

REFERENCES

- [1] W. Alghamdi and et al. Beyond adult and compas: Fair multi-class prediction via information projection. *Advances in Neural Information Processing Systems*, 35:38747–38760, 2022.
- [2] A. Chouldechova and M. G'Sell. Fairer and More Accurate, but for Whom? arXiv preprint arXiv:1707.00046, 2017.
- [3] J. Dressel and H. Farid. The accuracy, fairness, and limits of predicting recidivism. *Science advances*, 4(1):eaao5580, 2018.
- [4] M. Yaghini, A. Krause, and H. Heidari. A human-in-the-loop framework to construct context-aware mathematical notions of outcome fairness. In *Proceedings of AIES 2021*, pages 1023–1033, 2021.