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Algorithmic fairness notions compare predictions with true outcomes Group fairness notions that can be exactly computed from disagreement rates.
Example: In the criminal justice domain, COMPAS' predicted recidivism rate is Proposition 1: Calibration of the ML-based system is given as
compared against the true posterior recidivism rates computed during the next two years.
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INDEFINITE NOTIONS
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Group fairness notions that can be estimated from disagreement rates.
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Human perception of fairness compares algorithmic predictions against Proposition 4: Predictive Equality of the system can be estimated as
people’s outcome predictions [4]. X 1
True label observed in hindsight, y, is replaced with critic’s label y PE = 5 { mka‘x (U(ma k) - 1) + ml?x (1 — M(mla k))} ; (7)
Need such an approach for a quick preliminary fairness evaluation. DR Sp
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Human Critic

Human Perception
. VALIDATION USING A REAL DATASET

Dataset: Real human feedback curated by Dressel and Farid [3].
MOTIVATION: OPINIONS FROM DIVERSE STAKEHOLDERS 1000 defendant descriptions from COMPAS dataset

400 critics responded yes or no to “Will this person recidivate in 2 years?”.

Most practical application domains involve diverse stakeholders with varied L o
technical expertise. Critics’ responses are aggregated based on majority rule.

Criminal Justice: Judges, lawyers, prisoners and their family members, other people... Critic disagreements: s = critic_feedback & compas_label.
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Some stakeholders lack technical expertise

Currently, their opinions are neglected!
Can only obtain lower-dimensional feedback (e.g. disagreements) at most!
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Can we estimate fairness notions using disagreement feedback 000 I o
from non-expert stakeholders? [2] ~0.05 ] I

NON-EXPERT DISAGREEMENT MODEL
Given an input profile x € X and outcome label y = g(x) from an ML-based CONCLUSION AND FUTURE WORK
classifier g : X — )/, the non-expert disagreement model is given by _ _ _
o Proposed a novel and inclusive disagreement-based feedback model for
1, ity #y, (1) non-expert stakeholders.

Fairness Scores
o
%]
o

Fairness Estimate Error (10-fold Validation)
o
o

o
=
[=]

01 5 10 15 20 25 30 35 40 45 50
C AE EO PE OMR Sample size

S =
{O, otherwise. Fairness Estimation: (i) Definite notions can be precisely quantified from

where, § is the unknown non-expert’s intrinsic label. disagreement rates, (ii) Indefinite notions can be estimated from bounds.

In the future, we will apply the proposed feedback model to kidney

ML-based System Recidivism placement to collect patient and donor opinions.
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