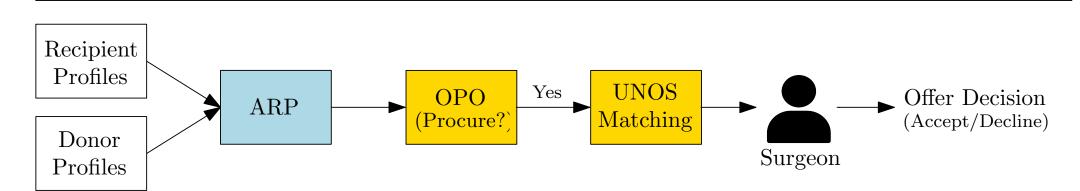
Learning Social Fairness Preferences from Non-Expert Stakeholder **Opinions in Kidney Placement**

Casey Canfield 1 Gabriella Stickney² Venkata Sriram Siddardh Nadendla ¹ Mukund Telukunta ¹ Sukruth Rao²

> ¹Missouri University of Science and Technology ²Michigan State University

Machine Learning in Kidney Placement: Concerns



Acceptance Rate Predictor (ARP) supports organ procurement teams via predicting the probability that a deceased donor kidney gets accepted [1].

- Trained using past kidney placement decisions
- Race and Age in Kidney Donor Profile Index (KDPI) and Estimated Glomerular Filtration Rate (eGFR) scores.

ARP inherits social biases from past kidney placement decisions!

Group Fairness Tradeoffs and Fairness Preferences

Group Fairness [2]: Compare ARP's statistical performance (function of predicted offer acceptance rate \hat{y} and patient survival outcome y) across two social groups $\mathcal{X}_m, \mathcal{X}_{m'}$, i.e. compute $f \triangleq \max_{k'} f_m - f_{m'}$, where

Fairness Notion (f)	Groupwise Rate f_m
Statistical Parity (SP)	$SP = \mathbb{P}(\hat{y} = 1 \mid x \in \mathcal{X}_m)$
Calibration (C)	$C = \mathbb{P}(y = 1 \mid \hat{y} = 1, x \in \mathcal{X}_m)$
Accuracy Equality (AE)	$AE = \mathbb{P}(\hat{y} = y \mid x \in \mathcal{X}_m)$
Equal Opportunity (EO)	$EO = \mathbb{P}(\hat{y} = 1 \mid y = 1, x \in \mathcal{X}_m)$
Predictive Equality (PE)	$PE = \mathbb{P}(\hat{y} = 1 \mid y = 0, x \in \mathcal{X}_m)$
Overall Misclassification Rate (OMR)	$OMR = \mathbb{P}(\hat{y} = 0 \mid y = 1, x \in \mathcal{X}_m)$

Challenges in evaluating ARP's fairness:

- Group fairness notions exhibit fundamental trade-offs [3].
 - Which notion of fairness does evaluators prefer?
- 2. Fairness evaluations only by surgeons who forecast patient outcomes.
 - What about fairness opinions of non-expert stakeholders (e.g. patients, donors)?

Survey Design

Prolific survey deployed on in Dec 2023: Recruited 85 participants.

- Kidney matching data from OPTN's Standard Transplant Analysis and Research (STAR) datasets.
- 10 data tuples (donor, 10 matched recipients, surgeon's decisions y, ARP outputs \hat{y}) per participant.
- We ask: On a scale of 1-7, rate the fairness of the ARP outputs. Here 1 indicates completely unfair and 7 indicates completely fair.

Race		Age		Gender	
White	60%	18-25	8%	Male	49%
Black	19%	25-40	57%	Female	49%
Asian	12%	40-60	29%	Non-binary	2%
Hispanic	3.4%	>60	6%		
Other	5.6%				

Table 1. Participant Demographics

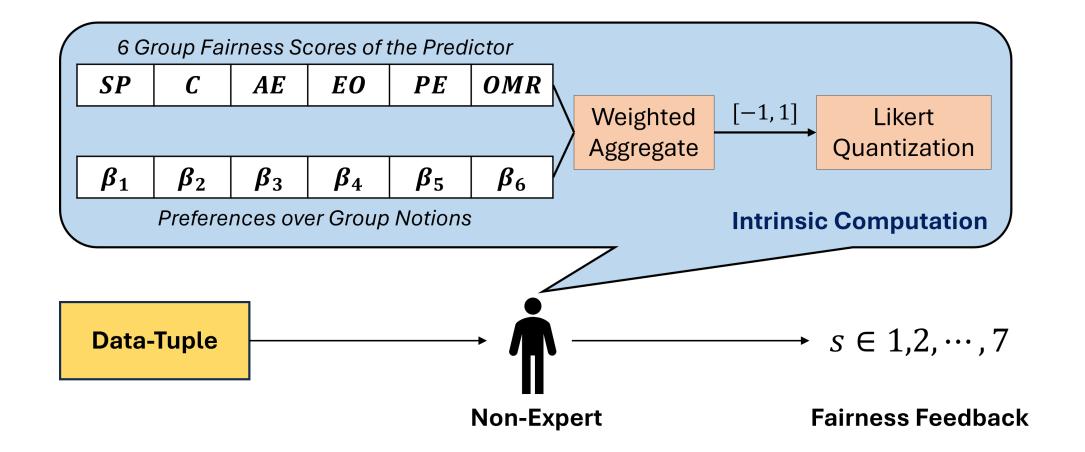
Fairness Feedback Model

Assumption: Participants exhibit an unknown weighted preference over L group fairness notions.

- 1. Participant's fairness preferences (weights): $\beta = \{\beta_1, \dots, \beta_L\}$
- 2. Participant's Intrinsic Weighted Fairness Evaluation:

$$\psi = \text{Preferences } \odot \text{Fairness Scores } \in [-1, 1]$$

- If ψ is -1 or 1, the predictor is deemed **unfair**.
- If ψ is closer to 0, the predictor is **fair**.
- 3. Participant receives utility u following Logit-Normal distribution with parameters μ and σ .
- 4. Estimated fairness evaluation \tilde{s} : modeled as Mixed-Logit probability [4].



Social Aggregation of Fairness Feedback

Given N non-expert participants each receiving M data-tuples, the social preference weight β^* is computed by minimizing the feedback regret

$$\mathcal{L}_F(\boldsymbol{\beta}) \triangleq \frac{1}{M} \sum_{m=1}^{M} \left(\frac{1}{N} \sum_{n=1}^{N} ||s_{n,m} - \tilde{s}_m^*(\boldsymbol{\beta})||_2^2 \right), \tag{1}$$

Projected Gradient Descent: $\boldsymbol{\beta}^{(e+1)} \leftarrow \mathbb{P}\left[\boldsymbol{\beta}^{(e)} - \delta \cdot \nabla \mathcal{L}_F(\boldsymbol{\beta}^{(e)})\right]$

Computation of Loss Gradient

Dependency chain of variables: $\mathcal{L}_F \leftarrow \tilde{s}^* \leftarrow \boldsymbol{u} \leftarrow \boldsymbol{\psi} \leftarrow \boldsymbol{\beta}$

$$\nabla_{\boldsymbol{\beta}} \mathcal{L}_{F} = (\nabla_{\tilde{s}^{*}} \mathcal{L}_{F})^{T} \cdot (\nabla_{\boldsymbol{u}} \tilde{s}^{*})^{T} \cdot (\nabla_{\boldsymbol{\psi}} u)^{T} \cdot \nabla_{\boldsymbol{\beta}} \boldsymbol{\psi}$$
Regret Gradient Social Foodback Litility Cradient Fairness Evaluation

Regret Gradient Social Feedback Utility Gradient

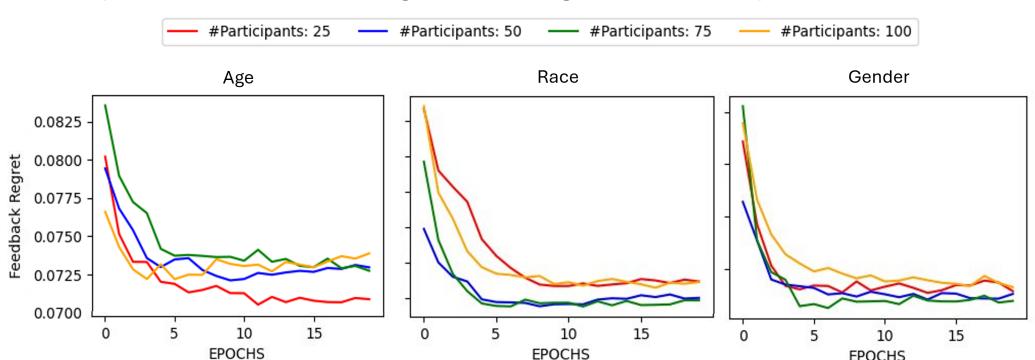
Depends on: • Likert Quantization

Gradient (Known)

• log-Normal Distri. (Closed form expression provided)

Results

Simulation Experiments: 15 data-tuples to N=25,50,75,100 simulated non-experts \Rightarrow Feedback regret converges within 5 epochs.



Survey Experiment: Accuracy Equality \Rightarrow Crowd's most preferred notion.

- Biases only matter if surgeon rejects the offer
- Some preference to demographic parity

Sensitive Attribute	Social Fairness Preference						
	SP	С	AE	EO	PE	OMR	
Age	0.15	0	0.45	0.007	0.37	0.01	
Gender	0.19	0.02	0.48	0	0.24	0.06	
Race	0.28	0.10	0.38	0	0.19	0.03	

References

- [1] L. Ashiku, R. Threlkeld, C. Canfield, and C. Dagli, "Identifying Al Opportunities in Donor Kidney Acceptance: Incremental Hierarchical Systems Engineering Approach," in 2022 IEEE International Systems Conference (SysCon), pp. 1-8, IEEE, 2022.
- [2] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, "A Survey on Bias and Fairness in Machine Learning," ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–35, 2021.
- [3] J. Kleinberg, S. Mullainathan, and M. Raghavan, "Inherent Trade-Offs in the Fair Determination of Risk Scores," Innovations in Theoretical Computer Science (ITCS) Conference, 2017.
- [4] D. McFadden et al., "Conditional Logit Analysis of Qualitative Choice Behavior," Frontiers in Econometrics, pp. 105-142, 1973.